

Aflatoxin biosynthesis

Jiujiang Yu, Deepak Bhatnagar & Kenneth C. Ehrlich

United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA

Summary Aflatoxins are toxic and extremely carcinogenic natural secondary metabolites produced primarily by the fungi *Aspergillus flavus* and *Aspergillus parasiticus*. The biosynthesis of aflatoxins is a complex process involving multi-enzymatic reactions. Genetic studies of the molecular mechanism of aflatoxin B₁ biosynthesis have identified an aflatoxin pathway gene cluster of 70 kilobase pairs in length consisting of at least 24 identified structural genes including a positive regulatory gene as transcription activator. The structural genes encode cytochrome P450 monoxygenases, dehydrogenases, oxidases, methyltransferases, a polyketide synthase and two unique fatty acid synthases. The aflatoxin biosynthesis and its genetic regulation are discussed in this review. The current knowledge of the relationship between fungal development and secondary metabolism is also summarized.

Biosíntesis de aflatoxinas

Resumen Las aflatoxinas son metabolitos secundarios tóxicos y altamente carcinógenos producidos, sobre todo, por las especies *Aspergillus flavus* y *Aspergillus parasiticus*. Su biosíntesis es un proceso complejo que implica reacciones multienzimáticas. Se ha descrito mediante estudios genéticos sobre el mecanismo molecular de biosíntesis de la aflatoxina B₁, un fragmento de 70 pares de kilobases de longitud, conteniendo al menos 24 genes estructurales conocidos, incluyendo un gen de regulación positiva como activador de transcripción. Dichos genes estructurales codifican monoxigenasas del citocromo P450, deshidrogenasas, oxidasas, metiltransferasas, una polyketido sintetasa y dos sintetasas de ácidos grasos exclusivas. En esta revisión se describe la biosíntesis de las aflatoxinas y su regulación genética, además de la relación entre el desarrollo del hongo y el metabolismo secundario.

Palabras clave Micotoxinas, Agrupación de genes, Factor de transcripción, Aspergillus flavus, Aspergillus parasiticus

Aflatoxins were discovered about 40 years ago after the devastating loss of poultry in England (Turkey X disease) [1]. Aflatoxins are the most toxic and carcinogenic compounds among the known mycotoxins and, therefore, have been extensively studied. These compounds are a group of polyketide-derived furanocoumarins (Figure 1), with at least 16 structurally related toxins that have been characterized. These toxins are produced by a number of different *Aspergillus* species [2-5]. However, in agricultural commodities, they are primarily produced by

Dirección para correspondencia: Dr. Jiujiang Yu United States Department of Agriculture Agricultural Research Service Southern Regional Research Center New Orleans, Louisiana, USA Tel.: +1 504 286 4405 Fax: +1 504 286 4419 E-mail: jiuyu@srrc.ars.usda.gov

©2002 Revista Iberoamericana de Micología Apdo. 699, E-48080 Bilbao (Spain) 1130-1406/01/10.00 Euros Aspergillus flavus and Aspergillus parasiticus. There are four major aflatoxins B_1 , B_2 , G_1 and G_2 . A. flavus, Aspergillus pseudotamarii, and Aspergillus ochraceoroseus produce only the B aflatoxins, and Aspergillus nomius, Aspergillus bombycis, A. parasiticus and an unnamed taxon from West Africa produce both B and G toxins. Aflatoxins were originally isolated from A. flavus hence the name A-fla-toxin. Other significant members of the aflatoxin family, M_1 and M_2 , are oxidative forms of aflatoxin B₁ modified in the digestive tract of some animals and isolated from milk, urine and feces [6].

Economic significance of aflatoxin contamination

Aflatoxin contamination of foods and feeds is a serious worldwide problem [7-9] resulting either from improper storage of commodities or preharvest contamination in corn, peanuts, cottonseed and tree nuts, especially during drought years. The worldwide extent of contamination of commodities is not totally understood often because of a reluctance to report its occurrence [10].

Aflatoxin contamination in food for human consumption as well as in feed for livestock has been found in many geographically diverse regions of the world. Such contamination has resulted in serious food safety

Key words Mycotoxins, Gene cluster, Transcription factor, Aspergillus flavus, Aspergillus parasiticus

and economic implications for the agriculture industry. Because of the health concern [11], regulatory guidelines of 20 parts aflatoxin per billion parts of food or feed substrate (ppb) is the maximum allowable limit imposed by the U.S. Food and Drug Administration for consumption and for interstate shipment of foods and feeds. In some European countries aflatoxin levels are regulated below five ppb.

Aflatoxin contamination has been a chronic problem in some parts of USA, e.g. in Arizona cotton growing areas and Southeast USA peanut farming regions. However, sporadic severe outbreaks of aflatoxin contamination have occurred in the Midwest USA cornbelt in 1977, 1980 and 1988. The total costs associated with aflatoxin contamination in corn, both in the private and public sectors, have been estimated to be over \$200 million in bad years.

Aflatoxins have been shown to be immunosuppressive, mutagenic, teratogenic and hepatocarcinogenic in experimental animals. The mode of action, metabolism and biosynthesis of aflatoxins has been extensively studied [reviewed in 8,9,12]. The chemical binding of the liver cytochrome P450-activated aflatoxin B₁ forms adducts with guanidine residues in DNA [13,14] that ultimately can cause liver cancer in certain animals [15,16]. An association of hepatocellular carcinoma and dietary exposure to aflatoxins was established from patients living in high-risk areas of Kenya, Mozambique, Swaziland, Thailand, People's Republic of China, Philippines, and the Transkei of South Africa [12,15-19]. The chemistry, biochemistry and molecular biology and synthesis of aflatoxins B_1 and B_2 have been investigated in significant detail. Since a flatoxin B_1 (AFB₁) is the most toxic of this group of toxins, extensive research has been done on its synthesis, toxicity and biological effects [8,9].

Biochemistry of aflatoxin biosynthesis

Attempts to decipher the aflatoxin biosynthetic pathway began with the discovery of the structure of these toxins. However, the major biochemical steps and the corresponding genetic components of AFB₁ biosynthesis have been elucidated only in the last decade at a molecular level. Several previous reviews have described the biochemistry and genetics of aflatoxin formation [8,9, 20-26].

Various studies have determined that aflatoxins are synthesized in two stages from malonyl CoA, first with the formation of hexanoyl CoA, followed by formation of a decaketide anthraquinone [for review see 20 and 23]. A series of highly organized oxidation-reduction reactions then allows formation of aflatoxin [20,21,27]. The currently accepted scheme (Figure 1) for aflatoxin biosynthesis is: hexanoyl CoA precursor —> norsolorinic acid, NOR —> averantin, AVN —> hydroxyaverantin, HAVN -> averufin, AVF -> hydroxyversicolorone, HVN-> versiconal hemiacetal acetate, VHA -> versiconal, VAL ---> versicolorin B, VERB ---> versicolorin A, VERA --> demethyl-sterigmatocystin, DMST -> sterigmatocystin, ST -> O-methylsterigmatocystin, OMST \rightarrow aflatoxin B₁, AFB₁ and aflatoxin G₁, AFG₁ (Figure 1). A branch point in the pathway has been established, following VHA production, leading to different structural forms of aflatoxins B2 and G2, AFB2 and AFG2 [20,28-33]. A number of metabolic grids may provide alternate pathways to aflatoxins [20,30,34-38].

Several specific enzyme activities associated with precursor conversions in the aflatoxin pathway [20,21,32,

36,39-45] have been partially purified [46-48] (Figure 1, identified enzymes enclosed in boxes); whereas others such as methyltransferases [48-50] have been purified to homogeneity. Several other enzymes, which are involved in aflatoxin biosynthesis such as a reductase [51] and a cyclase [52,53], have also been purified from A. parasiticus. A desaturase which converts VERA to VERB has been found in cell-free fungal extracts [29,32]. Matsushima et al., [54] have purified and characterized two versiconal hemiacetal acetate reductases involved in toxin synthesis, whereas Kusumoto and Hsieh [55] purified to homogeneity an esterase that converts VHA to versiconal. Bhatnagar et al. [46] and Chatterjee and Townsend [56] demonstrated that in the later stages of AFB1 and AFB2 synthesis, independent reactions and formation of different chemical precursors are catalyzed by common enzyme systems [30,43,46,57].

Genetics of aflatoxin biosynthesis

Genetic investigations of *A. flavus* and *A. parasiticus* have been hampered by the lack of sexual reproduction in these fungi. Hyphal anastomosis and nuclear exchange is governed by a complex vegetative compatibility system [58], which further complicates genetic studies. However, mutants of *A. parasiticus* and *A. flavus* strains can be analyzed using the parasexual cycle [see 59-61 for review]. Karyotype analysis for several *A. flavus* and *A. parasiticus* strains (by pulse-field gel electrophoresis) shows that there are 6-8 chromosomes ranging in size from approximately 3 to \geq 7 Mb [61,62].

Two fatty acid synthase genes (fas-1 and fas-2) and a polyketide synthase gene (pksA) are involved in the synthesis of the decaketide from malonyl CoA [20,24,45,63-68]. Once formed, the decaketide is expected to undergo ring closure to form a product, noranthrone which then must undergo oxidation to form the first stable intermediate, norsolorinic acid (NOR) [69]. No specific enzyme has yet been linked to the conversion of noranthrone to NOR, but an oxidase [20,70] should be involved. Most of the other steps in aflatoxin synthesis have been more clearly defined. The conversion of NOR to AVN [71] requires a dehydrogenase [20], encoded by the gene nor-1 [72,73]. Additional genes, such as norA [74,75] or norB (Yu et al., unpublished) are in the cluster which encode dehydrogenases that also might be capable of carrying out the conversion. The nor-I gene was cloned by complementation of a norsolorinic acid (NOR)-accumulating mutant [72]. The gene encoding a ketoreductase responsible for the conversion of versicolorin A (VER A) to sterigmatocystin (ST) was also cloned from the same A. parasiticus cosmid library [76]. It was confirmed later that the next stable intermediate is demethylsterigmatocystin (DMST) instead of ST and a cytochrome P-450 monooxygenase encoded by verA was required for the conversion of VERA to DMST [37,48]. A cytochrome P450 monooxygenase encoded by the gene avnA is required for the conversion of AVN to HAVN [77], whereas the gene *adhA* encoding an alcohol dehydrogenase [35] was found to be essential for the conversion of HAVN to AVF. The *avfA* gene encoding an oxidase is responsible for the conversion of AVF to VHA [78] in both A. parasiticus and A. flavus. Recently, a gene designated as estA, which could possibly encode an esterase [32,36,55,79] for the conversion of VHA to VAL, has been cloned [80]. The *vbs* gene [81,82] encodes a dehydratase that catalyzes the side chain cyclization of VHA to VERB. The conversion of VERB to VERA is catalyzed by a desaturase enco-

Figure 1. Generally accepted pathway for aflatoxin and sterigmatocystin biosynthesis. The corresponding genes and their enzymes are shown. The aflatoxin biosynthetic pathway gene cluster in *A. parasiticus* and *A. flavus* is shown in panel A and the sterigmatocystin biosynthetic pathway gene cluster in *A. naiulans* in panel B. The partial duplicated aflatoxin pathway gene cluster in *A. parasiticus* is shown in panel C. The gene names are labeled on the side of the cluster. A putative hexose utilization gene cluster is shown 3' to the aflatoxin pathway gene cluster. The open boxes on the vertical bar represent the pathway genes and arrows inside the boxes indicate the direction of gene transcription. Arrows outside the boxes indicate the relationships from the genes to the enzymes they encode; from the enzymes to the bioconversion steps they are involved in; and from the intermediates to products in the aflatoxin bioconversion steps, respectively. The main bioconversion of the structural genes characterized so far. The *fas-1 fas-2* and the *pksA* gene products, fatty acid synthases and polyketide synthase, respectively, are involved in the conversion of the structural genes characterized so far. The *fas-1 fas-2* and the *pksA* gene products, fatty acid synthases and polyketides synthase, respectively, are involved in the conversion of AVF to VHA. The *ver-1* and *verA* genes encode dehydrogenases for the conversion of VER A to DMST. The *omtA* gene encodes an O-methyltransferase for the conversion of ST to OMST and DHST to DHOMST. The *ordA* gene encodes an oxidorethyl sterigmatocystin; VHA, versiconal hemiacetal acetate; VAL, versiconal; VerB, versicolorin B; VerA, versicolorin A; DMST, demethylsterigmatocystin; DHOMST, dihydrodemethylsterigmatocystin; ST, sterigmatocystin; DHST, dihydrosterigmatocystin; OMST, O-methylsterigmatocystin; ST, sterigmatocystin; DHST, dihydrosterigmatocystin; OMST, O-methylsterigmatocystin; ST, sterigmatocystin; DHST, aflatoxin G₂ and M-transferase, methyltransferase, met

ded by the gene, *verB* (Bhatnagar *et al.*, unpublished) which is homologous to *stcL* in *Aspergillus nidulans* [83].

In the later stage of aflatoxin biosynthesis, an O-methyltransferase required for the conversion of ST to O-methylsterigmatocystin (OMST) was detected, purified and characterized [49,50,84]. The gene encoding O-methyltransferase was cloned using antibody raised against the O-methyltransferase [85]. The genomic DNA sequence of omtA was also determined from both A. parasiticus and A. flavus [86]. The omtA was the first gene whose gene product involvement in the aflatoxin biosynthesis was confirmed and thoroughly studied by in vitro enzyme assay. Another gene named omtB encoding a methyltransferase required for the conversion of DMST to ST and DHDMST to DHST was identified [78]. The omtB gene was simultaneously cloned by Yabe's group and named *dmtA* [87]. The final step in the formation of aflatoxins is the conversion of OMST or DHOMST to aflatoxins B₁, B₂, G₁ and G₂, steps requiring the presence of a NADPH dependent mono-oxygenase (ordA) [88,89]. The formation of the G toxins probably requires an additional oxidative step [20,33,89]. The gene(s) for G-group toxin formation has not yet been identified.

Other genes on the aflatoxin pathway cluster, whose functions have not yet been defined are, *cypA*, *cypX*, *moxY* and *ordB*. Some evidence exists that these genes encode monoxygenases which may be involved in catalyzing the conversion of AVF to VHA and OMST to aflatoxins B_1 and G_1 . Several of these steps probably require multiple enzyme activities [20]. Another gene *aflT* (Figure 1) encodes a protein with homology to antibiotic efflux proteins, which might be necessary for transporting the toxic aflatoxin out of the fungal cells (Chang *et al.*, unpublished).

Clustering of the aflatoxin pathway genes

Although coordinated regulation of the aflatoxin pathway genes was initially proposed [90], the first experimental evidence for clustering of the aflatoxin pathway genes was observed when Skory et al. [76] found that genes coding for enzymes in the earlier part of aflatoxin synthesis, nor-1 and ver-1 genes, were linked on a cosmid clone. By mapping overlapping cosmid clones in A. parasiticus and A. flavus, the linkage of the genes involved in early (nor1), middle (ver-1) and later stages (omtA) as well as a regulatory gene (aflR) of aflatoxin biosynthesis pathway was demonstrated, thereby establishing that the aflatoxin biosynthetic genes are clustered [91]. This allowed rapid discovery of genes essential for aflatoxin biosynthesis. These genes for the toxin synthesis are located on approximately 70 kb DNA region in the A. parasiticus and A. flavus genomes (Figure 1). The genes cypX, moxY [92] and ordB (Yu et al., unpublished) are at one end of the aflatoxin pathway gene cluster, whereas the yet uncharacterized genes norB, cypA and aflT are at the other end of the cluster (Yu et al., unpublished observations). A sugar utilization gene cluster immediately follows the aflatoxin cluster at the downstream end and may be involved in some aspect of cluster gene regulation [78].

In A. parasiticus strain ATCC 56775, a partial duplication of the gene cluster was confirmed recently by Chang and Yu [93]. Duplication of aflatoxin genes ver-1 and aflR was earlier reported by Liang et al., [94]. The duplicated region consists of seven genes, aflR2, aflJ2, adhA2, estA2, norA2, ver1B and omtB2 [76,93]. These genes were not expressed [8,93, Yu et al., unpublished data]. Their lack of expression could be a result of a chro-

mosomal location unfavorable to gene expression [95, Yu et al., unpublished].

Sterigmatocystin, the penultimate precursor to aflatoxin is produced by a number of non-aflatoxigenic fungi including A. nidulans. Brown et al., [96] characterized a 60 kb DNA region in A. nidulans that consists of a cluster of genes responsible for 25 coregulated transcripts involved in sterigmatocystin biosynthetic pathway in this fungus. In A. flavus and A. parasiticus the order of the genes and their direction of transcription of the aflatoxin cluster genes are identical and there is a high degree of sequence conservation (>95%) at both the nucleotide and amino acid level [91]. However, the order of the genes in the A. nidulans sterigmatocystin gene cluster is somewhat different from that of A. parasiticus/A. flavus (Figure 1). The sequence homologies are much lower even though the similarity of gene function and structure is conserved [91,96]. Common to both the aflatoxin and sterigmatocystin gene clusters is the presence of a gene, designated aflR, that encodes a zinc binuclear cluster-type, sequence specific DNA-binding protein that has been shown to be necessary for expression of the genes in both clusters [97-99].

Genes for many other secondary metabolism pathways are also clustered [26,100]. Such pathways are for the biosynthesis of trichothecenes [101,102], melanins [103,104], fumonisins [105], paxilline, HC-toxin [106] and AK-toxin [107]. Some catabolic pathway genes have also been organized in cluster. These include the pathway for nitrate assimilation involving the nitrate reductase (*niaD*) and nitrite reductase (*niiA*) genes in Aspergillus, in Penicillium chrysogenum [108-113], and in Leptosphaeria maculans [114], in Ustilago maydis [115], sugar utilization [116], proline utilization [100,117] and the biosynthesis of antibiotics such as penicillins [118].

A primary advantage of gene clustering may be to facilitate coordinated gene expression. Clustering of genes allows regulatory elements to be shared, and is known for biosynthetic pathways such as in the penicillin and nitrate assimilation in which gene function is vital to the organism's survival. There is also evidence that gene clustering may influence gene regulation through modulation of localized chromatin structure. Gene complementation experiments in A. parasiticus in this and other laboratories using the aflatoxin pathway gene constructs demonstrated that the site of integration within the fungal genome affects gene expression [95, Yu et al., unpublished data]. The integrated gene is expressed at proper levels only when it was introduced into the aflatoxin pathway gene cluster. When an aflatoxin pathway gene was introduced into the nitrate utilization gene cluster at the niaD locus, transcript levels were more than a hundred-fold lower than expected (Yu et al., unpublished observations). The clustered organization of fungal pathway genes may have some intrinsic significance in gene regulation in that expression of one cluster may affect the expression of other genes adjacent to the gene cluster. The sugar utilization gene cluster adjacent to the aflatoxin biosynthetic pathway gene cluster in A. parasiticus [116] may be important for aflatoxin gene expression since aflatoxin production is induced by sugar utilization.

How the aflatoxin cluster first arose is still not well understood, but the difference in gene organization between the sterigmatocystin cluster in *A. nidulans* (and the aflatoxin cluster in *A. ochraceoroseus*) and the clusters in most aflatoxin B_1 and G_1 -producing Aspergilli suggests that horizontal transfer between such Aspergilli is not a common occurrence. This deviation in cluster arrangement could be a consequence of *A. nidulans* having a

sexual reproduction cycle allowing recombination to occur, whereas A. flavus and A. parasiticus do not. Genetic variation in A. parasiticus can only be created by parasexual recombination. It is possible that the clustered arrangement of related metabolic pathway genes in fungi has originated from limited horizontal gene transfer between prokaryotes and fungi (for example, the penicillin biosynthesis pathway) which allowed introduction of genes encoding some of the oxidative proteins. Evidence for this is based on the presence of: a) common metabolic pathway gene clusters in both prokaryotes and fungi, e.g. the penicillin and cephalosporin pathways gene clusters; b) fungal cluster genes contain features of the prokaryotic pathway genes, such as the absence of introns and high G+C content [119]. Another hypothesis was proposed by Watson [120]. In this hypothesis it was suggested that clustering confers advantages to the cluster itself thus allowing the unit to facilitate the movement of the cluster into different organism by horizontal transfer.

Genetic regulation of aflatoxin biosynthesis

Many nutritional and environmental factors, such as temperature, pH, carbon and nitrogen source, stress factors, lipids, and trace metal salts, affect the production of aflatoxin by toxigenic Aspergilli. The molecular mechanisms for these effects are still not clear in spite of numerous studies [8,9,22,112,113,116,121]. Some of these factors may affect expression of the aflatoxin regulatory gene, *aflR*, or structural genes, possibly by altering the expression of globally acting transcription factors that respond to nutritional and environmental signals [122]. Some of these nutritional and environmental factors may affect aflatoxin accumulation by altering the activity of one or more of the enzymes involved in aflatoxin biosynthesis.

The pathway-specific regulatory gene, aflR, is found in aflatoxin- and sterigmatocystin-producing fungi [91,96-98,123-126]. Disruption of aflR prevented the accumulation of structural gene transcripts for aflatoxin biosynthesis. Introduction of an additional copy of the aflR caused the overproduction of aflatoxin biosynthetic intermediates [97].

The protein encoded by *aflR* has major domains typical of Gal4-type transcription factors. One of these domains, an N-terminal cysteine-rich domain, CTS-CASSKVRCTKEKPACARCIERGLAC, (Cys₆-Zn₂) [127-131], is typical of fungal and yeast GAL4-type transcription factors which are required for DNA-binding. Preceding the Cys₆-Zn₂ domain, and close to the N-terminus, there is an arginine-rich domain, RRARK, necessary for nuclear localization. In the C-terminus, a stretch (residues 408-444) of His, Arg , and acidic amino acids (HHPASPFSLLGFSGLEAN LRHRLRAVSSDIIDYLH-RE) is important for transcription activation, in particular the three acidic amino acids shown in bold [132]. Aspergillus sojae, a non-toxigenic strain used in industrial fermentations, was found to contain a defective aflR gene, due to a mutation resulting in early termination of 62 amino acids from its C-terminal end [133-135].

Comparison of *A. flavus* and *A. nidulans* AfIRs showed that while overall amino acid identity is only 31%, the nuclear localization signal domain and the Cys⁶⁻Zn² domain are 71% identical. Much higher identities were found between the amino acid sequences of AfIRs of other aflatoxin-producing species of *Aspergillus* (>96%). Besides the zinc cluster region, the immediately downstream neighboring amino acids (linker region) are also necessary for sequence-specific DNA binding in proteins

of this type [136]. Non-conservative substitution of amino acids in the "linker region" also resulted in defective AfIR [99).

The promoter region of all the aflatoxin pathway structural genes contains at least one palindromic (5'-TCGN $_{3}$ CGA-3') or partially palindromic sequence (5'-TCGN $_{3}$ CGR-3') [137,138] to which AflR binds in order to initiate transcription. In cases where more than one AflR-binding site is present in a gene promoter region, only one AflR binding site may be necessary. This is the case for expression of the *pksA* and *avnA* gene [139,140].

Based on reporter gene assays, removal of sequences in the aflR promoter from -758 to -280 had no apparent effect on promoter activity, but further truncation to -118 enhanced gene expression nearly 5-fold; further removal from bases -118 to -100 almost entirely eliminated reporter gene expression [141]. Therefore, a negative regulatory element may be present in the region from -280 to -118 and sequences from -100 to -118 appear to be critical for *aflR* promoter activity. Recent studies suggest that aflR transcription is responsive to a G-protein signaling cascade that is mediated by protein kinase A [142]. Such a signaling pathway may mediate some of the environmental effects on aflatoxin biosynthesis. Other environmentally sensitive transcription factors could also be involved in negative regulation of aflR expression. The presence of a putative PacC-binding site in the region close to *aflR*'s transcription start site may play some role in pH regulation on aflatoxin production. It was reported that the PacC-binding represses the transcription of acidexpressed genes under alkaline conditions [143] and aflatoxin biosynthesis in A. flavus occurs in acidic media, but is inhibited in alkaline media [144].

Adjacent to the aflR gene in the aflatoxin gene cluster, a divergently transcribed gene, aflJ, was also found to be involved in the regulation of transcription [93,145,146]. AflJ has no known sequence homology to proteins identified in the databases [145]. This gene encodes a protein, AflJ, that binds to the carboxy terminal region of AflR and may affect AflR activity [93,145,146]. Disruption of aflJ in A. flavus resulted in a failure to produce any aflatoxin pathway metabolites [145]. Previously, it was found [124] that *aflR* expression was enhanced in A. parasiticus transformants with aflR in which the aflJ region was present compared to transformants in which this region was missing. It was also found that [113] a transcription factor required for nitrate assimilation, AreA, bound to sites near the *aflJ* transcription start site in the *aflR-aflJ* intergenic region, suggesting that *aflJ* expression could be mediated by nitrogen source via the action of AreA. Therefore, AflJ may be an AflR coactivator. The exact mechanism by which *aflJ* modulates transcription of these pathway genes in concert with aflR is to be further investigated.

Environmental and nutritional factors affecting aflatoxin biosynthesis

The PacC [143] and AreA [113] binding sites in the *aflR-aflJ* intergenic region are the potential evidences that gene expression is regulated by environmental signals (pH and nitrate). The nitrate effect on aflatoxin pathway gene expression may be directly caused by changes in the *aflR* or *aflJ* gene expression level. To support this observation (Ehrlich, unpublished), we found that certain strains of aflatoxin-producing Aspergilli respond differently to nitrate than do other strains, and that the differences could be correlated with differences in the number of possible GATA sites (ranging from five to nine) near the *aflJ* start site [147].

Other genes in the aflatoxin biosynthetic cluster have also been found to contain AreA and PacC binding sites at key positions in their promoters that may affect their expression. For example, the 1.7 kb intergenic region separating the *nor-1* and *pksA* genes has two adjacent PacC sites nearly in the middle that, from site-directed mutagenesis studies, affect expression of *pksA*, which encodes the pathway-specific polyketide synthase necessary for the first steps in formation of the polyketide backbone [148]. In *A. nidulans*, the promoter region of the gene *stcU* which is necessary for conversion of versicolorin A to demethylsterigmatocystin, contains a PacC-binding site immediately upstream of its AfIR-binding site and is probably involved in expression of this gene.

Whether or not nitrate suppresses aflatoxin production is not clear. The expression of nitrate reductase and nitrite reductase genes requires both the lifting of nitrogen metabolite repression and specific induction by nitrate [121,149,150]. Expression of genes involved in nitrate utilization is transcriptionally activated by the global positive-acting regulatory factor, AreA [113,151]. Another way that nitrate could affect aflatoxin production is by increasing cytoplasmic NADPH/NADP ratio, which could favor biosynthetic reductive reactions, and thus, could promote utilization of malonyl coenzyme A and NADPH for fatty acid synthesis rather than for polyketide synthesis [152]. Kachholz and Demain [153] and Orvehed et al., [154] found that nitrate represses the activity of enzymes involved in the synthesis of alternariol monomethyl ether in Alternaria alternata. In transformants containing an additional copy of *aflR*, the transcription of aflatoxin pathway genes increases in nitrate medium [67]. This increase could result from the increased *aflR* copy number which elevates the basal levels of AFLR in the transformants. Preliminary data have shown that AFLR1 (a recombinant version of AFLR, but containing an intact zinc finger) also binds to sites in the promoter regions of several aflatoxin biosynthetic genes and may thereby activate their transcription [140].

The role of carbon utilization in the regulation of expression of genes involved in aflatoxin biosynthetic pathway is not as yet well understood. Unlike the biosynthesis of many other secondary metabolites, aflatoxin gene expression is induced by the presence of simple carbohydrates, for example glucose, sucrose, maltose, but not by peptone, sorbose, or lactose [reviewed in 22]. It is to be noted that all of the aflatoxin pathway genes so far studied lack CreA sites in their promoters and, therefore, would not be expected to be subject to carbon catabolite repression which is mediated by the transcription factor, CreA. However, an interesting possible role for CreA in aflR expression could be control of expression of the antisense aflR mRNA transcript (Ehrlich, unpublished observation), since at the start of this reported transcript are two tandem bolite repression prevents the expression of this anti-sense aflR transcript, it would be expected not to down-regulate AflR protein accumulation by interfering with the activity of the *aflR* sense transcript. Another transcription factor that responds to simple sugars is Rgt1, a positively acting factor that has been shown to be necessary for regulation of glucose transporter molecule expression [155]. In Saccharomyces cerevisiae Rgt1 functions as a transcriptional repressor in the absence of glucose, but in the presence of high concentrations of glucose it functions as a transcriptional activator. A possible Rgt1 site is present in

the promoter region of *A. parasiticus aflJ*, and may be involved in regulation of its expression. Such regulation may be necessary for production of aflatoxin pathway metabolites (see above).

Another indirect role for an effect of glucose utilization on aflatoxin pathway gene expression could be related to the fact that immediately downstream of the aflatoxin gene cluster is a four gene sugar cluster (Figure 1), including genes that putatively encode a hexose transporter, a glucosidase, an NADH oxidase and a Cys₆Zn₂type regulatory gene [116]. Activation of genes in this sugar cluster by an external hexose signal could create a region of active chromatin that includes the neighboring aflatoxin gene cluster [156]. To support this observation, we and others found that when individual aflatoxin biosynthetic genes insert at sites other than the aflatoxin gene cluster following fungal transformation, expression of these genes is much lower (>100-fold) than it is when the genes insert into the aflatoxin cluster [95, Yu, unpublished observation].

Another way that carbon source utilization could affect aflatoxin gene expression may be by inducing G-protein-dependent signaling in *Aspergillus* cells [157]. The G-protein signaling regulates fungal development and aflatoxin formation [142,158]. This will be discussed in more detail in the following section.

Aflatoxin biosynthesis and fungal development

Evidence exists that secondary metabolism is associated with fungal developmental processes such as sporulation and sclerotia formation [158-160]. It was observed that the environmental conditions required for secondary metabolism and for sporulation are similar [159,160]. It was also reported that the spore formation and secondary metabolite formation occur at about the same time [24,142]. Certain compounds in A. parasiticus that exhibit the ability to inhibit sporulation have also been shown to inhibit aflatoxin formation [161]. Chemicals that inhibit polyamine biosynthesis in A. parasiticus and A. nidulans inhibit both sporulation and aflatoxin/sterigmatocystin biosynthesis [162]. More evidence from mutant strains of Aspergilli demonstrated the relationship between aflatoxin formation and sporulation. Mutants that are deficient in sporulation were unable to produce aflatoxins [59]. A Fusarium verticillioides mutation in FCC1 gene resulted in both reduced sporulation and reduced fumonisin B1 production [163].

Since many environmental and nutritional factors affect aflatoxin formation, it is likely that one or more signal transduction pathways affect aflatoxin formation. Also, there appears to be a genetic connection between fungal development and toxin formation [59,69,164-167]. A correlation between increased pool size of cAMP and aflatoxin production had been observed previously [168,169]. Sterigmatocystin production by A. nidulans appears to require inhibition of FadA-dependent signaling [142]. FadA is the alpha subunit of the A. nidulans heterotrimeric G-protein. When FadA is bound to GTP and in its active form, sterigmatocystin production (and sporulation) was repressed. However, in the presence of FlbA, the intrinsic GTPase, activity of FadA is stimulated, thereby leading to GTP hydrolysis, inactivation of FadA-dependent signaling, and stimulation of sterigmatocysin production. A non-sporulating, "fluffy" mutant strain of A. nidulans was found to be deficient in sterigmatocystin formation [170,171]. Hicks et al., [142] provided evidence that a G-protein signal transduction pathway mediated by

protein kinase A regulates both aflatoxin/sterigmatocystin synthesis and sporulation. The G-protein signaling pathway involves the "fluffy" gene regulators FluG and FlbA, and the conidiation gene regulators BrlA, FadA and PkaA. A gene, brlA, in A. nidulans encodes a transcriptional regulator (BrlA) believed to activate developmental genes [172] since mutation in brlA gene resulted in no conidiation [173]. In the process of characterizing A. nidulans "fluffy" mutants, six loci were identified to be the results of recessive mutations in the fluffy genes fluG, flbA, flbB, flbC, flbD, and flbE. Two of these genes, fluG and flbA encoding protein factors FluG and FlbA, were found to be involved in the regulation of both asexual development (conidiation) and sterigmatocystin biosynthesis in A. nidu*lans* [142,174]. The *fluG* is involved in the synthesis of an extracellular diffusible factor that acts upstream of *flbA*. The *pkaA* gene encodes the catalytic subunit of a cyclic AMP (cAMP)-dependent protein kinase A (PKA), PkaA [142,175]. Over expression of pkaA (PkaA) inhibits brlA and *aflR* (positive regulator of aflatoxin/sterigmatocystin genes) expression [175]. The *fadA* encodes the alpha subunit of a heterotrimeric G-protein, FadA. A domain of the FlbA, the regulator of the G-protein signaling (RGS) is presumably to inhibit FadA [174]. In the overall scheme of the proposed G-protein signaling pathway, the FadA and PkaA favor vegetative growth and inhibit conidiation and aflatoxin/sterigmatocystin production; while FluG and FlbA inhibit FadA and PkaA function and promote conidiation and aflatoxin/sterigmatocystin biosynthesis [158,142,174]. This G-protein signaling pathway involving FadA in the regulation of aflatoxin production may also exist in other Aspergilli such as A. parasiticus (Keller, unpublished cited in 158).

CONCLUSION

Biosynthesis of aflatoxin is a highly complex process governed by genes maintained in a cluster. Transcriptional regulation is controlled by a protein encoded by aflR. Chromosomal position effects, as well as a number of other globally acting regulatory genes may be subject to nutritional and environmental control. No evidence for horizontal transfer of the aflatoxin cluster among aflatoxin and sterigmatocystin-producing organisms is available, and no prokaryotic origin for clustered genes has yet been identified. The biological and evolutionary importance of aflatoxin production to the organism is also poorly understood. The clustering of these genes implies that the cluster plays an important role in fungal growth and survival. Otherwise these genes would be rapidly lost, due to genetic drift events and rearrangements. It is not yet understood how aflatoxins contribute to fungal survival since certain non-aflatoxigenic A. flavus species appear to compete favorably with aflatoxigenic species for the same niche. Other questions remain: what is the relationship between primary and secondary metabolism, how does stress affect aflatoxin gene expression, particular during fungal interaction with plants. Screening of an Expressed Sequence-Tag (EST) library using microarrays may provide a way to better understand how and why aflatoxins are produced. The A. flavus EST/microarray project is being actively pursued by this Research Unit in collaboration with The Institute for Genomic Research. Information obtained through this genomics project may help in devising strategy for elimination of aflatoxin contamination of crops, and thereby provide a sustainable, healthy food supply.

Bibliografía

- Cullen JM Newberne PM Acute hepato-1. Groopman JD (Eds.) The toxicology of aflatoxins. New York, Academic Press,
- 1994: 3-26. Goto T, Wicklow DT, Ito Y. Aflatoxin and 2 cyclopiazonic acid production by sclero tium-producing *Aspergillus tamarii* strain. Appl Environ Microbiol 1996; 62: 4036-4038.
- Peterson SW, Ito Y, Horn BW, Goto T. 3. Aspergillus bombycis, a new aflatoxigenic species and genetic variation in its sibling species, A. nomius. Mycologia 2001; 93: 689-703.
- Klich MA, Mullaney EJ, Daly CB, Cary 4. JW. Molecular and physiological aspects of aflatoxin and sterigmatocystin biosynthesis by Aspergillus tamarii and A. ochra-ceoroseus. Appl Microbiol Biotechnol 2000: 53: 605-609.
- Ito Y, Peterson SW, Wicklow DT, Goto T. 5. Aspergillus pseudotamarii, a new aflato-
- Asperginus pseudoramin, a new anato-xin-producing species in *Aspergillus* sec-tion *Flavi*. Mycol Res 2001; 105: 233-239. Squire RA. Ranking animal carcinogens: a proposed regulatory approach. Science 1989; 214: 887-891. 6.
- Cleveland TE, Cary JW, Brown RL, et al. 7. Use of biotechnology to eliminate aflato-xin in preharvest crops. Bull Inst Compr Agr Sci Kinki Univ 1997; 5: 75-90. Bhatnagar D, Yu J, Ehrlich KC, Toxins of
- 8 filamentous fungi. In: Breitenbach M, Crameri R, Lehrer S (Eds.) Fungal Allergy and Pathogenicity. Chem Immunol. Vol 81, Basel, Karger, 2002: 167-206.

- Yu J. Genetics and biochemistry of myco-toxin synthesis. In: Arora DK (Ed.). Handbook of fungal biotechnology (2nd Edition. New York, Marcel Dekker, 2003: 9.
- *in press.* Jelinek CF, Pohland AE, Wood GE. 10. Worldwide occurrence of mycotoxins in foods and feeds - an update. J Assoc Off Anal Chem 1989; 72: 223-230. Van Egmond HP. Current situation on regulations for mycotoxins: Overview of
- 11 Iderations for Mycotoxins: Overview of tolerances and status of standard met-hods of sampling and analysis. Food Addit Contam 1989; 6: 134-188. Eaton DL, Groopman JD. The toxicology of aflatoxins-human health. Veterinary and particultural projiticapore. New York
- 12
- and agricultural significance. New York, Academic Press, 1994. Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC. Mutational hot spot 13. in the p53 gene in hepatocellular carcinomas. Nature (London) 1991; 350: 427-428.
- Bressac B, Kew M, Wands J, Ozturk M. 14 Selective G to T mutations of p53 gene in
- hepatocellular carcinoma from Southern Africa. Nature (London) 1991; 350: 429-431. Groopman JD, Sabbioni G. Detection of aflatoxin and its metabolites in human aflatoxin and its metabolites in human biological fluids. In: Bray GA, Ryan DH (Eds.) Pennington Center Nutrition Series, Vol. 1. Mycotoxins, cancer and health. Baton Rouge, Louisiana State University Press, 1991: 18-31. Wogan GN. Aflatoxins as risk factors for primary hepatocellular carcinoma in humans. In: Bray GA, Pyan DH (Eds.)
- 16 humans. In: Bray GA, Ryan DH (Eds.)

Pennington Center Nutrition Series Vol. 1. Mycotoxins, cancer and health. Baton Rouge, Louisiana State University Press, 1991; 3-17.

- Yeh FS, Ju MC, Mo CC, et al. Hepatitis B virus, aflatoxins, and hepatocellular carci-
- Chen CJ, Wang LY, Lu SN, *et al.* Cancer Res 1989; 49: 2506-2709. Chen CJ, Wang LY, Lu SN, *et al.* Elevated aflatoxin exposure and increa-sed risk of hepatocellular carcinoma. 18.
- Hepatology 1996; 24: 38-42. Chen CJ, Yu MW, Liaw YF, et al. Chronic 19. hepatitis B carriers with null genotypes of glutathione S-transferase M1 and T1 polymorphisms who are exposed to afla-toxin are at increased risk of hepatocellular carcinoma. Am J Human Genetics 1996: 59: 128-134.
- Bhatnagar D, Ehrlich KC, Cleveland TE. 20. Oxidation-reduction reactions in biosynt-hesis of secondary metabolites. In: Bhatnagar D, Lillehoj EB, Arora DK (Eds.) Handbook of applied mycology: mycotoxins in ecological systems. New York, Marcel Dekker 1992; 255-286.
- Dutton MF. Enzymes and aflatoxin biosynthesis. Microbiol Rev 1988; 52: 21. 274-295.
- Payne GA, Brown MP. Genetics and physiology of aflatoxin biosynthesis. Annu Rev Phytopathol 1998; 36: 329-362
- Minto RE, Townsend CA. Enzymology 23. and molecular biology of aflatoxin biosynthesis. Chem Rev 1997; 97: 2537-2555

- 24. Trail F. Mahanti N. Linz J. Molecular bio-
- Trail F, Mahanti N, Linz J. Molecular bio-logy of aflatoxin biosynthesis. Microbiol 1995; 141: 755-765. Bhatnagar D, Cleveland TE, Brown RL, Cary JW, Yu J, Chang PK. Preharvest aflatoxin contamination: elimination through biotechnology. Ecological agri-culture and sustainable development. In: Decliwed CS. Acres B. Paradhaura NS. 25.
- culture and sustainable development. In: Dhaiwal GS, Arora R, Randhawa NS, Dhawan AR (Eds.) Luhiana, Indian Ecological Society, 1998: 100-129. Cary JW, Chang PK, Bhatnagar D. Clustered metabolic pathway genes in filamentous fungi. In: Khachatourans GG, Arora DK (Eds.) Applied mycology and biotechnology, agriculture and food pro-duction. Amsterdam, Elsevier Science BV 2001: 1:165-198 26.
- BV, 2001; 1:165-198.
 27. Townsend CA. Progress towards a biosynthetic rationale of the aflatoxin pathway. Pure Appl Chem 1997; 58: 227-220.
- 238.
 28. Cleveland TE, Bhatnagar D, Foell CJ, McCormick SP. Conversion of a new metabolite to aflatoxin B₂ by Aspergillus parasiticus. Appl Environ Microbiol 1987; E2: 0904 2027. 53: 2804-2807
- McGuire SM, Brobst SW, Graybill TL, 29. Pal K, Townsend CA. Partitioning of tetrahydro- and dihydrobisfuran formation in aflatoxin biosynthesis defined by cell free and direct incorporation experi-ments. J Am Chem Soc 1989; 111: 8308-8309
- 30. Yabe K, Ando Y, Hamasaki T. Biosynthetic relationship among aflato-xins B₁, B₂, G₁, and G₂. Appl Environ Microbiol 1988; 54: 2101-2106. Yabe K, Nakamura H, Ando Y, Terakado N, Nakajima H, Hamasaki T. Isolation and characterization of Aspercifius para
- 31. and characterization of Aspergillus para-siticus mutants with impaired aflatoxin production by a novel tip culture method. Appl Environ Microbiol 1988; 54: 2096-2100.
- Yabe K, Ando Y, Hamasaki T. 32. Desaturase activity in the branching step between aflatoxins B_1 and G_1 and aflatoxins B_2 and G_2 . Agric Biol Chem 1991; 55:1907-1911.
- Yabe K, Nakamura M, Hamasaki T 33. Enzymatic formation of G-group aflato-xins and biosynthetic relationship betwe-
- 34.
- xins and biosynthetic relationship betwe-en G- and B-group aflatoxins. Appl Environ Microbiol 1999; 65: 3867-3872. Bennett JW, Chang PK, Bhatnagar D. One gene to whole pathway: the role of norsolorinic acid in aflatoxin research. Adv Appl Microbiol 1997; 45: 1-15. Chang PK, Yu J, Ehrlich KC, *et al.* The aflatoxin biosynthesis gene *adhA* in *Aspergillus parasiticus* is involved in con-version of 5¹-hydroxyaverantin to averu-fin. Appl Environ Microbiol 2000; 66: 4715-4719. Yabe K Ando Y, Hamasaki T, A metabo-35.
- 36.
- 4715⁻⁴719. Yabe K, Ando Y, Hamasaki T. A metabo-lic grid among versiconal hemiacetal ace-tate, versiconol acetate, versiconol and versiconal during aflatoxin biosynthesis. J Gen Microbiol 1991; 137: 2469-2475. Yabe K, Matsuyama Y, Ando Y, Nakajima H, Hamasaki T. Stereochemistry during aflatoxin biosynt-hesis: conversion of norsolorinic acid to averufin. Appl Environ Microbiol 1993; 59: 2486-2492. Yabe K, Hamasaki T. Stereochemistry during aflatoxin biosynthesis: cyclase 37.
- 38 during aflatoxin biosynthesis: cyclase reaction in the conversion of versiconal to versicolorin B and racemization of versi-
- conal hemiacetal acetate. Appl Environ Microbiol 1993; 59: 2493-2500. Bhatnagar D, Cleveland TE, Lillehoj EB. Enzymes in aflatoxin B₁ biosynthesis 39. Strategies for identifying pertinent genes. Mycopathologia 1989; 107: 75-83. Bhatnagar D, Ehrlich KC, Cleveland TE.
- 40. Biochemical characterization of an aflato-xin B₂ producing mutant of Aspergillus flavus. FASEB J 1993; 7: A1234.
 Bhatnagar D, Cleveland TE. Purification
- and characterization of a reductase from Aspergillus parasiticus SRRC 2043 involved in aflatoxin biosynthesis. FASEB J 1990: 4: A2164.
- Hsieh DP, Wan CC, Billington JA. A ver-42. siconal hemiacetal acetate converting enzyme in aflatoxin biosynthesis.

Mycopathologia 1989; 107: 121-126. Anderson JA, Chung CH, Cho SH. Versicolorin A hemiacetal, hydroxydihy-dro-sterigmatocystin and aflatoxin G² a reductase activity in extracts from *Aspergillus parasiticus*. Mycopathologia 1990; 111: 39-45. McGuire SM, Townsend CA. Demonstration of a Baever-Villiger oxida 43.

- 44. Demonstration of a Baeyer-Villiger oxida-tion and the time course of cyclization in bisfuran ring formation during aflatoxin B-biosynthesis. Bioorganic & Medicinal Chemistry Letters 1993; 3: 653-656. Brown DW, Adams TH, Keller NP.
- 45 Aspergillus has distinct fatty acid synthases for primary and secondary metabo-lism. Proc Natl Acad Sci USA 1996; 93:
- 14873-14877. Bhatnagar D, Cleveland TE, Kingston DGI. Enzymological evidence for separa-te pathways for aflatoxin B_1 and B_2 biosynthesis. Biochem 1991; 30: 4343-4250 46. 4350
- Chuturgoon AA, Dutton MF, Berry RK. The preparation of an enzyme associated with aflatoxin biosynthesis by affinity
- With anatoxin biosynthesis by attinity chromatography. Biochem Biophys Res Comm 1990; 166: 38-42. Yabe K, Ando Y, Hashimoto J, Hamasaki T. Two distinct O-methyltransferases in aflatoxin biosynthesis. Appl Environ Microbiol 1989; 55: 2172-2177. Bhatnagar D, Ullah AHJ, Cleveland TE. Purification and characterization of a 48
- 49 Purification and characterization of a methyltransferase from Aspergillus para-
- metnyltransterase from Aspergillus para-siticus SRRC 163 involved in aflatoxin biosynthetic pathway. Prep Biochem 1988; 18: 321-349. Keller NP, Dischinger JHC, Bhatnagar D, Cleveland TE, Ullah AHJ. Purification of a 40-kilodalton methyltransferase active in the aflatoxin biosynthetic pathway. Apal Favieron Microbiol 1002; 50: 470. 50. Appl Environ Microbiol 1993; 59: 479-484.
- Bhatnagar D, Lax AR, Prima B, Cary JW, Cleveland TE. Purification of a 43 Kda enzyme that catalyzes the reduction of norsolorinic acid to averantin in aflatoxin 51. biosynthesis. FASEB J 1996; 10: A1522. Lin BK. Anderson JA. Purification and
- 52 Lin BK, Anderson JA. Purification and properties of versiconal cyclase from *Aspergillus parasiticus*. Arch Biochem Biophys 1992; 293: 67-70. Silva JC, Minto RE, Barry CE, Holland KA, Townsend CA. Isolation and charac-terinsticate the writight in B authors.
- 53. RA, Townsend CA. Isolaton and citatac-terization of the versicolorin B synthase gene from Aspergillus parasiticus: expan-sion of the aflatoxin B- biosynthetic clus-ter. J Biol Chem 1996; 271: 13600-13608. Matsushima K, Ando Y, Hamasaki T, Vebe K, Durifeding and hearestricities
- Yabe K. Purification and characterization of two versiconal hemiacetal acetate reductases involved in aflatoxin biosynthesis. Appl Environ Microbiol 1994; 60: 2561-2567.
- Kusumoto K, Hsieh DP. Purification and 55. characterization of the esterases involved in aflatoxin biosynthesis in Aspergillus parasiticus. Can J Microbiol 1996; 8: 804-810
- 56. Chatterjee M, Townsend CA. Evidence for the probable final steps in aflatoxin biosynthesis. J Org Chem 1996; 59: 4424-4429
- 4424-4429. Bhatnagar D, Cleveland TE. Aflatoxin biosynthesis: developments in che-mistry,biochemistry and genetics. In: Shotwell OL, Hurburgh CR Jr, (Eds.). 57. Aflatoxin in corn: New perspectives. Ames, Iowa State University Press, 1991: 391-405.
- 58
- 59
- Jant-405.
 Bayman P, Cotty PJ. Vegetative compatibility and genetic diversity in the Aspergillus flavus population of a single field. Can J Bot 1991; 69: 1707-1711.
 Bennett JW, Papa KE. The aflatoxigenic Aspergillus. In: Ingram DS, Williams PA (Eds.) Genetics of Plant Pathogenic Fungi. London, Academic 1988: 264-280.
 Payne GA, Woloshuk CP. The transformation of Aspergillus flavus to study aflatoxin biosynthesis. Mycopathologia 1989; 107: 139-144.
 Keller NP, Cleveland TE, Bhatnagar D. A 60.
- Keller NP, Cleveland TE, Bhatnagar D. A molecular approach towards understan-ding aflatoxin production. In: Bhatnagar D, Lillehoj EB, Arora DK (Eds.). Mycotoxins in ecological systems Vol. 5. 61

New York, Marcel Dekker Inc., 1992: 287-310.

- Foutz KR, Woloshuk CP, Payne GA 62. Cloning and assignment of linkage group loci to a karyotypic map of the filamen-tous fungus *Aspergillus flavus*. Mycologia 1995; 87: 787-794. Townsend CA, Christensen SB,
- 63.
- Trautwein K. Hexanoate as a starter unit in polyketide synthesis. J Am Chem Soc 1984; 106: 3868-3869. Trail F, Mahanti N, Rarick M, et al. Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus para-siticus and functional disruption of a gene 64. involved early in the aflatoxin pathway. Appl Environ Microbiol 1995; 61: 2665 2673.
- 2673. Mahanti N, Bhatnagar D, Cary JW, Joubran J, Linz JE. Structure and func-tion of fas-1A, a gene encoding a putative fatty acid synthetase directly involved in aflatoxin biosynthesis in Aspergillus para-65. siticus. Appl Environ Microbiol 1996; 62: 191-195
- Watanabe CMH, Wilson D, Linz JE 66. Townsend CA. Demonstration of the catalytic roles and evidence for the physicatalytic roles and evidence for the physi-cal association of type I fatty acid synthe-ses and a polyketide synthase in the biosynthesis of aflatoxin B₁. Chem Biol 1996; 3: 463-469. Chang PK, Cary JW, Yu J, Bhatnagar D, Cleveland TE. Aspergillus parasiticus polyketide synthase gene, *pksA*, a homo-ca of Appartillus pickdona will in parti-
- 67. log of Aspergillus nidulans wA, is requi-red for aflatoxin B. Mol Gen Genet 1995;
- 248: 270-277. Feng GH, Leonard TJ. Characterization of the polyketide synthase gene (*pksLl*) required for aflatoxin biosynthesis in 68. Aspergillus parasiticus. J Bact 1995; 177: 6246-6254
- Bennett JW. Loss of norsolorinic acid and 69.
- Bennett JW. Loss of norsolorinic acid and aflatoxin production by a mutant of Aspergillus parasiticus. J Gen Microbiol 1981; 124 : 429-432. Vederas JC, Nakashima TT. Biosynthesis of averufin by Aspergillus parasiticus: detection of 180-label by 13C NMR isoto-pe shifts. J Chem Soc Chem Commun 1980; 4: 183-185. Bennett JW, Lee LS, Shoss SM, Boudreaux GH. Identification of averantin as an aflatoxin B: precursor: placement in the biosynthetic pathway. Apol Environ 70.
- 71.
- the biosynthetic pathway. Appl Environ Microbiol 1980; 39: 835-839. Chang PK, Skory CD, Linz JE. Cloning of a gene associated with aflatoxin biosynt-72.
- a gene associated with aflatoxin biosynthesis in Aspergillus parasiticus. Curr Genet 1991; 21: 231-233. Trail F, Chang PK, Cary J, Linz JE. Structural and functional analysis of the *nor-1* gene involved in the biosynthesis of aflatoxins by Aspergillus parasiticus. Appl Environ Microbiol 1994; 60: 4078-4085. Cary JW, Wright M, Bhatnagar D, Lee R, Chu FS. Molecular characterization of an Aspergilus parasiticus debydrogenase
- 74. Aspergillus parasiticus dehydrogenase
- Aspergilius parasiticus oenyorogenase gene, norA, located on the aflatoxin biosynthesis gene cluster. Appl Environ Microbiol 1996; 62: 360-366. Bennett JW, Bhatnagar D, Chang PK. The molecular genetics of aflatoxin biosynthesis. FEMS-Symp Madison, Wisconsin, Science Tech Publishers, 1994; 69:51-58. 75.
- Yu J, Chang PK, Bhatnagar D, Cleveland 76. TE. Cloning and functional expression of an esterase gene in *Aspergillus parasiti-*
- an esterase gene in Aspergillus parasiti-cus. Mycopathologia 2003; in press. Yu J, Chang PK, Cary JW, Bhatnagar D, Cleveland TE. avnA, a gene encoding a cytochrome P-450 monooxygenase is involved in the conversion of averantin to averufin in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol 1997; 63: 1349-1356. Yu J, Wolshuk CP, Bhatnagar D, Cleveland TE. Cloning and characteriza-tion of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species. Gene 2000; 248: 157-167. Bennett JW, Lee LS, Cucullu AF. Effect of dichlorvos on aflatoxin and versicolorin A production in Aspergillus parasiticus. 77
- 78.
- 79. A production in *Aspergillus parasiticus*. Bot Gaz 1976; 137: 318-324.

- Skory CD, Chang PK, Cary J, Linz JE. Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. Appl Environ Microbiol 1992; 58: 3527-2527 3537
- 81. Silva JC, Townsend CA. Heterologous expression, isolation, and characteriza-tion of versicolorin B synthase from
- Aspergillus parasiticus. J Biol Chem 1996; 272: 804-813. McGuire SM, Silva JC, Casillas EG, Townsend CA. Purification and characte-rization of versicolorin B synthase from Accorritius paraciticus. Catalysis of the 82.
- rization of versicolorin B synthase from Aspergillus parasiticus. Catalysis of the stereodifferentiating cyclization in aflato-xin biosynthesis essential to DNA interac-tion. Biochem 1996; 35: 11470-11486. Kelkar HS, Hernant S, Skloss TW, Haw JF, Keller NP, Adams TH. Aspergillus nidulans stcL encodes a putative cytoch-rome P-450 monooxygenase required for bisfuran desaturation during aflatoxin/ste-rigmatocystin biosynthesis. J Biol Chem 1997; 272: 1589-1594. Cleveland TE. Lax AR. Lee LS. 83.
- 1997; 272: 1589-1594. Cleveland TE, Lax AR, Lee LS, Bhatnagar D. Appearance of enzyme activities catalyzing conversion of sterig-matocystin to aflatoxin B₁ in late growth-phase *Aspergillus parasiticus* cultures. Appl Environ Microbiol 1987; 53: 1711-1713. 84.
- 1713. Yu J, Cary JW, Bhatnagar D, Cleveland TE, Keller NP, Chu FS. Cloning and cha-racterization of a cDNA from *Aspergillus parasiticus* encoding an *O*-methyltransfe-rase involved in aflatoxin biosynthesis. Appl Environ Microbiol 1993; 59: 3564-2571 85.
- 3571. Yu J, Chang PK, Payne GA, Cary JW, Bhatnagar D, Cleveland TE. Comparison of the *omtA* genes encoding *O*-methyl-transferases involved in aflatoxin biosynt-86
- transferases involved in artiatoxin biosynt-hesis from Aspergillus parasiticus and A. flavus. Gene 1995; 163: 121-125. Motomura M, Chihaya N, Shinozawa T, Hamasaki T, Yabe K. Cloning and cha-racterization of the O-methyltransferase I gene (dmtA) from Aspergillus parasiticus associated with the conversions of demothyldroignatoursiti to storigna 87. demethylsterigmatocystin to sterigma-tocystin and dihydrodemethylsterigma-
- tocystin and dihydrodemethylsterigma-tocystin to dihydrodemethylsterigmatocystin in aflatoxin biosynthesis. Appl Environ Microbiol 1999; 65: 4987-4994. Prieto R, Woloshuk CP. *ord1*, an oxidore-ductase gene responsible for conversion of O-methylsterigmatocystin to aflatoxin in *Aspergillus flavus*. Appl Environ Microbiol 1997; 63: 1661-1666. Yu J, Chang PK, Cary JW, et al. Characterization of the critical amino 88.
- 89. Yu J, Chang PK, Cary JW, et al. Characterization of the critical amino acids of an Aspergillus parasiticus cytochrome P450 monooxygenase enco-ded by ordA involved in aflatoxin Bı, Gı, Bı, and Gı biosynthesis. Appl Environ Microbiol 1998; 64: 4834-4841. Cleveland TE, Bhatnagar D. Molecular coulding of aflatoxin biosynthesis. In:
- 90. regulation of aflatoxin biosynthesis. In: Bray GA, Ryan DH (Eds.) Pennington Center Nutrition Series, Vol. 1. Mycotoxins, cancer and health. Baton Rouge, Louisiana State University Press, 1991: 270-287.
- 91
- 92.
- 93.
- Rouge, Louisiana State University Press, 1991: 270-287.
 Yu J, Chang PK, Cary JW, et al. Comparative mapping of aflatoxin pathway gene clusters in *Aspergillus parasiticus* and *Aspergillus flavus*. Appl Environ Microbiol 1995; 61: 2365-2371.
 Yu J, Chang PK, Bhatnagar D, Cleveland TE. Genes encoding cytochrome P450 and monooxigenase enzymes define one end of the aflatoxin pathway gene cluster in *Aspergillus parasiticus*. Appl Microbiol Biotechnol 2000; 53: 583-590.
 Chang PK, Yu J. Characterization of a partial duplication of the aflatoxin gene cluster in *Aspergillus parasiticus* ATCC 56775. Appl Microbiol Biotechnol 2002; 58: 632-636.
 Liang SH, Skory CD, Linz JE. Characterization of the function of the aflatoxin biosynthesis in *Aspergillus parasiticus*. Appl Environ Microbiol 1996; 62: 4568-4575. 94

- Chiou CH, Miller M, Wilson DL, Trail F, 95. Chiou CH, Miller M, Wilson DL, Trail F, Linz JE. Chromosomal location plays a role in regulation of aflatoxin gene expression in *Aspergillus parasiticus*. Appl Environ Microbiol 2002; 68: 306-315 315.
- 315. Brown DW, Yu JH, Kelkar HS, et al. Twenty-five coregulated transcripts defi-ne a sterigmatocystin gene cluster in Aspergillus ridulans. Proc Natl Acad Sci USA 1996; 93: 1418-1422. Chang PK, Ehrlich KC, Yu J, Bhatnagar D, Cleveland TE. Increased expression of Aspergillus parasiticus afIR, encoding a sequence-specific DNA binding protein, relieves nitrate inhibition of aflatoxin 96
- relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microbiol 1995; 61: 2372-2377. Yu JH, Butchko RA, Fernandes M, Keller NP, Leonard TJ, Adams TH. Conservation of structure and function of the aflatoxin regulatory agence off from 98. the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr
- Genet 1996; 29: 549-555. Ehrlich KC, Montalbano BG, Bhatnagar D, Cleveland TE. Alteration of different 99 D, Cleveland TE. Alteration of different domains in AFLR affects aflatoxin path-way metabolism in *Aspergillus parasiti-cus* transformants. Fungal Genet Biol 1998; 23: 279-287.
 100. Keller NP, Hohn TM. Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 1997; 21: 17-29.
 101 Protter PH. Europium tyting:
- 101. Proctor RH. Fusarium toxins: Trichothecenes and Fumonisins. In: Cary JW, Linz JE, Bhatnagar D (Eds.) Microbial Foodborne Diseases: Mechanisms of pathogenesis and toxin synthesis. Technomic, Lancaster, 2000: 363-381
- 102.Trapp SC, Hohn TM, McCormick S, Jarvis BB. Characterization of the gene
- Jarvis BB. Characterization of the gene cluster for biosynthesis of macrocyclic tri-chothecenes in *Myrothecium roridum*. Mol Gen Genet 1998; 257: 421-432.
 103. Kimura N, Tsuge T. Gene cluster invol-ved in melanin biosynthesis of the fila-mentous fungus *Alternaria alternata*. J Bacteriol 1993; 175: 4427-4435.
 104. Tsai HF, Wheeler MH, Chang YC, Kwon-Chung KJ. A developmentally regulated gene cluster involved in condial piment
- gene cluster involved in conidial pigment biosynthesis in *Aspergillus fumigatus*. J Bacteriol 1999; 181: 6469-6477. 105. Proctor RH, Desjardins AE, Plattner RD.
- Proctor RH, Desjardins AE, Plattner RD.. Biosynthetic and genetic relationships of B-series fumonisins produced by *Gibberella fujikuroi* mating population A. Nat Toxins 1999; 7: 251-258.
 Ahn JH, Walton JD. Chromosomal orga-nization of TOX2, a complex locus con-trolling host-selective toxin biosynthesis in *Coellichely* a carbaryum Plast Cosl
- in Cochliobolus carbonum. Plant Cell 1996; 8: 887-897.
- 1996; 8: 887-897.
 107. Tanaka A, Shiotani H, Yamamoto M, Tsuge T. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact 1990: 12: 691-702 1999; 12: 691-702.
- 108. Johnstone IL, McCabe PC, Greaves P, et al. Isolation and characterisation of the ar. Isolator and cirate resolution of the crnA-niiA-niaD gene cluster for nitrate assimilation in *Aspergillus nidulans*. Gene 1990; 90: 181-192.
 109. Haas H, Marzluf GA. NRE, the major
- nitrogen regulatory protein of *Penicillium* chrysogenum, binds specifically to ele-ments in the intergenic promoter regions
- ments in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet 1995; 28: 177-183. 110. Kitamoto N, Kimura T, Kito Y, Ohmiya K, Tsukagoshi N. The nitrate reductase gene from a shoyu koji mold, Aspergillus oryzae KBN616. Biosci Biotechnol Biochem 1995; 9: 1795-1797. 111. Amaar YG, Moore MM. Mapping of the nitrate-assimilation gene cluster (crnA-
- nitrate-assimilation gene cluster (crnA-niiA-niaD) and characterization of the nitrite reductase gene (niiA) in the oppor-tunistic fungal pathogen Aspergillus fumi-gatus. Curr Genet 1998; 33: 206-215. 112. Chang PK, Ehrlich KC, Linz JE, Bhatnagar D, Cleveland TE, Bennett JW.
- Characterization of the Aspergillus niaD and niiA gene cluster. Curr Genet 1996; 30: 68-75

- 113. Chang PK, Yu J, Bhatnagar D, Cleveland TE. Characterization of the Aspergillus parasiticus major nitrogen regulatory gene, areA. Biochim Biophys Acta 2000; 1491: 263-266.
- 114. Williams RS, Davis MA, Howlett BJ. The nitrate and nitrite reductase-encoding genes of Leptosphaeria maculans are closely linked and transcribed in the same direction. Gene 1995; 158: 153-154
- 154.
 115. Banks GR, Shelton PA, Kanuga N, Holden DW, Spanos A. The Ustilago maydis nar1 gene encoding nitrate reduc-tase activity: sequence and transcriptio-tase activity: sequence and transcriptional regulation. Gene 1993; 131: 69-78. 116.Yu J, Chang PK, Bhatnagar D, Cleveland
- K. Yu J, Chang PK, Bhatnagar D, Cleveland TE. Cloning of sugar utilization gene clus-ter in *Aspergillus parasiticus*. Biochim Biophys Acta 2000; 1493: 211-214.
 Arst HN Jr, MacDonald DW. A gene clus-ter in *Aspergillus nidulans* with an inter-nally located cis-acting regulatory region. Nature 1975; 254: 26-31.
 MacCabe AP, Riach MB, Unkles SE, Kinghorn JR. The *Aspergillus nidulans* npeA locus consists of three continuous
- Kingnom JR. The Aspergillus hidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 1990; 9: 279-287.
 119. Weigel BJ, Burgett SG, Chen VJ, et al. Cloning and expression in *Escherichia coli* of isopenicillin N synthetase genes from *Streptomyces lipmanii* and Aspergillus pidvane L Pactorial 1989. Aspergillus nidulans. J Bacteriol 1988; 170: 3817-3826.
- 1/0: 3817-3826.
 120. Walton JD. Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 2000; 30: 167-171.
 121. Bennett JW, Rubin PL, Lee LS, Chen PN. Influence of trace elements and nitrogen control of trace and nitrogen by a
- Influence of trace elements and nitroger sources on versicolorin production by a mutant strain of Aspergillus parasiticus.
 Mycopathologia 1979; 69: 161-166.
 122. Tag A, Hicks J, Garifullina G, Ake C, Phillips TD, Beremand M, Keller N, G-porticip signaling modifying diffusion diffusion.
- protein signalling mediates differential production of toxic secondary metabolites (In Process Citation). Mol Microbiol 2000; 38.658-665
- David Color, Nystrom GJ, Bhatnagar D, Cleveland TE, Woloshuk CP. Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl Environ Microbiol 1993; 59: 156-162.
- Environ Microbiol 1993; 59: 156-162.
 124. Chang PK, Cary JW, Bhatnagar D, et al. Cloning of the Aspergillus parasiticus apa-2 gene associated with the regula-tion of aflatoxin biosynthesis. Appl Environ Microbiol 1993; 59: 3273-3279.
 125. Chang PK, Yu J, Bhatnagar D, Cleveland TE. Repressor-AFLR interaction modula-ted offective biosynthesis in Aspergillus.
- tes aflatoxin biosynthesis in Aspergillus parasiticus. Mycopathologia 1999; 147: 105-112.
- Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE, Payne GA. Molecular characterization of *aflR*, a regulatory locus for aflatoxin biosynthe-sis. Appl Environ Microbiol 1994; 60: 2408-2414.
- 2408-2414.
 127. Lamb HK, Newton GH, Levett LJ, Cairns E, Roberts CF, Hawkins AR. The QUTA activator and QUTR repressor proteins of Aspergillus nidulans interact to regulate transcription of quinate utilization pathway genes. Microbiol 1996; 142: 1477-1490 1490
- 1490.
 128. Burger G, Strauss J, Scazzocchio C, Lang BF. nirA, the pathway-specific regu-latory gene of nitrate assimilation in *Aspergillus nidulans*, encodes a putative GAL4-type zinc finger protein and con-tains four introns in highly conserved regions. Mol Cell Biol 1991; 11: 5746-5755
- 129. Todd RB, Andrianopoulos A, Davis MA
- 129. Todd RB, Andrianopoulos A, Davis MA, Hynes MJ. FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences. EMBO J 1998; 17: 2042-2054.
 130. Suarez T, Oestreicher N, Penalva MA, Scazzocchio C. Molecular cloning of the uaY regulatory gene of Aspergillus nidu-lans reveals a favoured region for DNA insertions. Mol Gen Genet 1991; 230: 369-375 369-375

- 131. Kulmburg P, Sequeval D, Lenouvel F, Mathieu M, Felenbok B. Identification of the promoter region involved in autoregu-lation of the transcriptional activator ALOB in Agregative side data of Coll ALCR in *Aspergillus nidulans*. Mol Cell Biol 1992; 12: 1932-1939. 132. Chang PK, Yu J, Bhatnagar D, Cleveland TE. The carboxy-terminal portion of the
- 132. Chang PK, Yu J, Bhatnagar D, Cleveland TE. The carboxy-terminal portion of the aflatoxin pathway regulatory protein *AFLR* of *Aspergillus parasiticus* activates *GAL1:lacZ* gene expression in *Saccharomyces cerevisiae*. Appl Environ Microbiol 1999; 65: 2508-2512.
 133. Matsushima K, Chang PK, Yu J, Abe K, Bhatnagar D, Cleveland TE. Pre-termination in *atlR* of *Aspergillus sojae* inhibits aflatoxin biosynthesis. Appl Microbiol Biotechnol 2001; 55: 585-589.
 134. Matsushima K, Yashiro K, Hanya Y, Abe K, Yabe K, Hamasaki T. Absence of aflatoxin biosynthesis in koji mold (*Aspergillus sojae*). Appl Microbiol Biotechnol 2001; 55: 771-776.
 135. Takahashi T, Chang PK, Matsushima K, *et al.* Non-functionality of *Aspergillus sojae aflR* in a strain of *Aspergillus sojae aflR* in a strain of *Aspergillus parasiticus* with a disrupted *aflR* gene. Appl Environ Microbiol 2002; 68: 3737-3743.
 136. Reece RJ, Ptashne M. Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science 1993; 261: 909-911.
 137. Fernandes M. Keller NP. Adams TH.

- 909-911
- 137. Fernandes M, Keller NP, Adams TH. Sequence-specific binding by Aspergillus nidulans AfIR, a C6 zinc cluster protein
- Indularis AIR, a Co Entit Cluster protein regulating mycotoxin biosynthesis. Mol Microbiol 1998; 28: 1355-1365.
 138. Ehrlich KC, Montalbano BG. Binding of an aflatoxin biosynthesis regulatory pro-tein to the 5'-upstream promoter region of several aflatoxin pathway genes. FASEB 1 1995; 9: A145.
- J 1995; 9: A1415. 139.Cary JW, Montalbano BG, Ehrlich KC. Promoter elements involved in the expression of the Aspergillus parasiticus aflatoxin biosynthesis pathway gene avnA. Biochim Biophys Acta 2000; 1491: 7-12.
- 140. Entlich KC, Montalbano BG, Cary JW. Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin path-way biosynthesis genes in Aspergillus parasiticus. Gene 1999; 230: 249-257.
 141. Ehrlich KC, Cary JW, Montalbano BG. Characterization of the promoter for the
- gene encoding the aflatoxin biosynthetic pathway regulatory protein AFLR. Biochim Biophys Acta 1999; 1444: 412-417
- 142. Hicks JK, Yu JH, Keller NP, Adams TH. . IIGNS JR., TU JH, Keller NP, Adams TH. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signa-ling pathway. EMBO J 1997; 16: 4916-4923.
- 4923.
 143. Tilburn J, Sarkar S, Widdick DA, et al. The Aspergillus PacC zinc finger trans-cription factor mediates regulation of both acid-and alkaline expressed genes by ambient pH. EMBO J 1995; 14: 779-790.
 144. Cotty PJ. Aflatoxin and sclerotial produc-tion by Approximative flow and sclerotial produc-tions by Approximative flow and sclerotial productive flow and sclerotial producting flow and
- tion by *Aspergillus flavus:* influence of pH. Phytopathology 1988; 78: 1250-1253
- 1253.
 145. Meyers DM, Obrian G, Du WL, Bhatnagar D, Payne GA. Characterization of *aflJ*, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol 1998; 64: 3713-3717.

- 146. Flaherty JE, Payne GA. Overexpression of *aflR* leads to upregulation of pathway gene expression and increased aflatoxin production in *Aspergillus flavus*. Appl Environ Microbiol 1997; 63: 3995-4000.
- 147. Ehrlich K, Cotty PJ. Variability in nitrogen
- 147. Ehrlich K, Cotty PJ. Variability in nitrogen regulation of aflatoxin production by *Aspergillus flavus* strains. Appl Microbiol Biotechnol 2002; 60: 174-178.
 148. Ehrlich KC, Montalbano BG, Cotty PJ. Sequence comparison of *aflR* from different *Aspergillus* species provides evidence for variability in regulation of aflatoxin production. Fungal Genet Biol 2003; *in press.* press
- 149. Exley GE, Colandene JD, Garrett RH. Molecular cloning, characterization, and nucleotide sequence of nit-6, the structu-ral gene for nitrate reductase in Neurospora crassa. J Bacteriol 1993; 175: 2379-2392.
- 175: 2379-2392.
 150. Fu YH, Marzluf GA. Metabolic control and autoregulation of nit3, the nitrate reductase structural gene of *Neurospora crassa*. J Bacteriol 1988; 107: 657-661.
 151. Kudla B, Caddick M, Langdon T, *et al*. The regulatory gene *areA* mediating nitrogen metabolite repression in *Aspergillus nidulans*. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 1990; 9: 1355-1364.
 152. Niehaus WG Jr, Jiang W. Nitrate induces enzymes of the marmitol cycle and sup-presses versicolorin synthesis in *Aspergillus parasiticus*. Mycopathologia
- presses versicolorin synthesis in Aspergillus parasiticus. Mycopathologia 1989; 107: 131-137.
 153. Kachholz T, Demain AL. Nitrate repres-sion of averufin and aflatoxin biosynthe-sis. J Nat Prod 1983; 46: 499-506.
 154. Orvehed M, Haggblom P, Soderhall K. Nitrogen inhibition of mycotoxin produc-tion by Altrarcia altranta. Appl Environ
- Nitrogen inhibition of mycotoxin production by *Alternaria alternata*. Appl Environ Microbiol 1988; 54: 2361-2364.
 155. Ozcan S, Leong T, Johnston M. Rgt1p of *Saccharomyces cerevisiae*, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Molec Cell Biol 1996; 16: 6419-6426.
 156. Muro-Pasteur MI, Gonzalez R, Strauss J, Narendja F, Scazzocchio C. The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. EMBO J 1999; 18: 1584-1597.
 157. Daniel PB, Walker WH, Habener JF. Cyclic AMP signaling and gene regulation. Annu Rev Nutr 1998; 18: 353-383.
 158. Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development.

- metabolism and fungal development. Microbiol Mol Biol Rev 2002: 66: 447
- 459.
 159. Bu'Lock JD. Intermediary metabolism and antibiotic synthesis. Adv Appl Microbiol 1961; 3: 293-342.
 160. Sekiguchi J, Gaucher GM. Conidiogenesis and secondary metabo-lism in *Penicillium urticae*. Appl Environ Microbiol 1977; 33: 147-158.
 161 Poice L. Dovidpament of Aspareillus.
- 161. Reiss J. Development of Aspergillus parasiticus and formation of aflatoxin B₁ barashcus and ionation of anatomic of anatomi
- lation of sterigmatocystin biosynthesis and asexual and sexual sporulation in Emericella nidulans. Antonie Leeuwenhock 1998; 73: 199-205.

- 163. Shim WB, Woloshuk CP. Regulation of 163. Shim WB, Woloshuk CP. Regulation of fumonisin B₁ biosynthesis and conidiation in *Fusarium verticillioides* by acyclin-like (C-type) gene, FCC1. Appl Environ Microbiol 2001; 67: 1607-1612.
 164. Bennett JW, Leong PM, Kruger S, Keyes D. Sclerotial and low aflatoxigenic morp-hological variants from haploid and diploid Apportive percention.
- diploid *Aspergillus parasiticus*. Experientia 1986; 42: 841-851. 165. Kale SP, Bhatnagar D, Bennett JW. Isolation and characterization of morpho-Isolation and characterization of morphological variants of Aspergillus parasiticus deficient in secondary metabolite production. Mycol Res 1994; 98: 645-652.
 166. Kale SP, Cary JW, Bhatnagar D, Bennett JW. Characterization of experimentally
- induced, nonaflatoxingenic variant strains of Aspergillus parasiticus. Appl Environ Microbiol 1996; 62: 3399-3404.
 167. Chang PK, Bennett JW, Cotty PJ. Association of aflatoxin biosynthesis and sciential development in Aspergillus
- sclerotial development in Aspergillus parasiticus. Mycopathologia 2001; 153: 41-48
- 168. Khan SN, Venkitasubramanian TA Regulation of aflatoxin biosynthesis: effect of adenine nucleotides, cyclic AMP and N6-O2' -dibutyrJ cyclic AMP on the incorporation of (1-14C)-acetate into aflatoxins by Aspergillus parasiticus NRRL-3240. J Environ Sci Health (B) 1986: 21.67-85
- NRRL-3240. J Énviron Sci Health (B) 1986; 21: 67-85.
 169. Khan SN, Venkitasubramanian TA. Cyclic AMP pool and aflatoxin production in Aspergillus parasiticus NRRL 3240 and Aspergillus flavus NRRL 3537. Indian J Biochem Biophys 1987; 24: 308-313.
 170. Tamame M, Antequera F, Villanueva JR, Santos T. High frequency conversion of a "fluffy" developmental phenotype in Aspergillus spp. by 5-azacytidine treat-ment: evidence for involvement of a sin-gle nuclear gene. Mol Cell Biol 1983; 3: 2287-2297. 2287-2297.
- 171. Wieser J, Lee BN, Fondon JW, Adams TH. Genetic requirement for initiating asexual development in Aspergillus nidu-lans. Curr Genet 1994; 27: 62-69.
 172. Clutterbuck AJ. A mutational analysis of
- condicial development in Aspergillus nidu-lans. Genetics 1969; 63: 317-327.
 173. Johnstone IL, Hughes SG, Clutterbuck
- AJ. Cloning an *Aspergillus* developmental gene by transformation. EMBO J 1985; 4: 1307-1311.
- 1307-1311.
 174. Yu JH, Weiser J, Adams TH. The Aspergillus FIbA RGS domain protein antagonizes G-protein signaling to block proliferation and allow development. EMBO J 1996; 15: 5184-5190.
 175. Shimizu K, Keller NP. Genetic involve-ment of comp damandat prating kinese.
- ment of camp-dependent protein kinase in a G-protein signaling pathway regula-ting morphological and chemical transi-tions in *Aspergillus nidulans*. Genetics 2001; 157: 591-600.